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1. More Implementation details

Empty space skipping. Resolution of the occupancy vol-
ume per video frame is set to 24× 24× 48. During evalua-
tion, we divide each volume cell into a subgrid of 5× 5× 5
and calculate the density of each subgrid point following
[6]. A volume cell is considered as occupied if there ex-
ists a subgrid point inside with density above threshold τ1
(τ1 = 5 in all our experiments).

Rendering pipeline. During training, we uniformly sam-
ple 64 query locations along each camera ray within the
scene bound. We do not use hierarchical sampling in [4].
For each query point, we first project it onto three axis-
aligned orthogonal MLP maps which is predicted by the
2D CNN decoder to get the corresponding MLP parame-
ters. Then, we embed the query point to high-dimensional
feature vector using the multi-level hash tables and feed it
into the MLP network to predict the color and density. To
efficiently evaluate multiple MLP networks, we develop a
custom PyTorch layer [5] based on the library MAGMA [1],
following KiloNeRF [6]. We obtain the final result by com-
bining the prediction from each MLP map via elementwise
summation. Pixel color is rendered using the differentiable
volume rendering following [4], which is defined as:

C̃(r) =

M∑
i=1

ωici,

ωi = Ti(1− exp(−σiδi)),

Ti = exp(−
i−1∑
j=1

σjδj)

(1)

where ci, σi denotes color and density predicted by MLP
maps, Ti is the accumulated transmittance, ωi is the com-
position weight, and δi denotes the ray step size.

During inference, we set the sampling step size to be
1

256

th the diagonal distance of the scene bound. Sampling
step size denotes distance between adjacent sampling lo-
cations on a ray. For each ray, we sample points only in
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occupied voxel with the pre-computed occupancy volume.
To further speed up the rendering process, we first obtain
the density values and compute the accumulated transmit-
tance and composition weight. Sampling points are filtered
for the color evaluations with threshold τ2 on composition
weight (τ2 = 1e−3 in all our experiments), which means we
ignore a query point if its weight is below τ2. Colors and
densities are predicted in the same way as in the training
stage, and the final predicted color is computed via volume
rendering as Eq. (1). The rendering pipeline is implemented
based on [2].

Loss function. The loss function is defined as:

L = Lc + λKLLKL. (2)

Here Lc is the error between rendered pixel color C̃(r) and
observed pixel color C(r):

Lc =
∑
r∈R

||C̃(r)− C(r)||22, (3)

where R means the set of camera rays. The Kullback-
Leibler divergence loss LKL follows in the formation in [3].
We set λKL = 1e−6 in all our experiments. If the tar-
get scenes contain only foreground objects, we also add the
mask loss to help the training, which measures the error
between ground truth foreground mask M̃(r) and rendered
image opacities M(r):

Lm =
∑
r∈R

||M̃(r)−M(r)||22. (4)

The weight of the mask loss is set as 0.1 in experiments.

2. Results on the data of Neural Volumes
Neural Volumes [3] has released a video sequence in

their paper, which records the floating dry ice. We found
that there is a moving human in the background of some
camera views, which is different from the data presented in
the paper of Neural Volumes. Since Neural Volumes does
not describe the training frames and camera views, we se-
lected a 100-frame video clip, ranging from frame 16120 to
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Figure 1. Qualitative results on the data of Neural Volumes.
We render more photorealistic images than baseline methods.

PSNR ↑ SSIM ↑ LPIPS ↓

NV [3] 32.01 0.951 0.218
C-NeRF [7] 31.84 0.953 0.227
Ours 32.25 0.948 0.198

Table 1. Comparison on the data of Neural Volumes. Our
method outperforms Neural Volumes and C-NeRF quantitatively.

16417. We test our model on camera 400015 and train on
the remaining cameras except 400055 and 400070.

The results in Table 1 demonstrate that our method
outperforms Neural Volumes and C-NeRF [7]. Figure 1
presents the qualitative comparisons.

3. Discussion

Dynamic MLP maps vs. per-frame KiloNeRF. An alter-
native way to represent real-time volumetric video is storing
a sequence of per-frame KiloNeRF [6]. This scheme makes
the storage and training time increase linearly with the num-
ber of video frames. For example, given a 300-frame video,
we need to store 300 KiloNeRF models. Consider that a
KiloNeRF model requires 20 training hours and 30 MB. 300
KiloNeRF models would take 6000 hours for training and
consume 9 GB in storage. In contrast, our method requires
16 hours for training and takes up about 240 MB in storage.

Motivation of using two parameter sets. We represent
the volumetric video with two set of parameters: (1) hash
tables and (2) a CNN that generates the MLP maps. The
motivation of using a hybrid of hash tables and MLP maps
to achieve both high quality and efficiency. 1) Why MLP
maps: Only using hash tables needs a relatively large MLP
to achieve high quality, which will be slow due to the costly
network evaluation, as suggested by the rendering speed of
DyNeRF and C-NeRF. Using MLP maps increases the ren-
dering speed with small MLPs. 2) Why hash tables: com-

Figure 2. Failure cases. Our method has difficulty in rendering
very detailed content, such as the text and fingers.

pared to MLP maps alone, hash tables improve the render-
ing quality, as shown in the section of ablation studies. We
will make the motivation clearer in the revised paper.

Why use MLP maps instead of feature maps. We use
MLP maps to improve rendering speed. Table 1 in the sec-
tion of ablation studies indicates that using feature maps in-
stead of MLP maps needs a large MLP to achieve high qual-
ity, which will be slow. Feature maps can work together
with MLP maps, but it does not perform better than hash
tables, as demonstrated by the results of ablation studies.

Contribution to rendering speed. When the ESS is not
used, the rows 6 and 9 in Table 1 of ablation studies shows
that MLP maps make the rendering 9x faster. When the
ESS is used, the results of ablation studies indicate that
MLP maps make the rendering 4x faster. ESS is a super
effective technique. We believe that achieving another 4x
speedup on top of it by a novel representation design is non-
straightforward, beneficial to the community, and critical
for real-time applications.

Failure cases. Our method struggles to render very de-
tailed content, such as the text and fingers. Figure 2 presents
some qualitative results.

4. Societal impact
The volumetric videos could be misused for recording

and spreading some moments of real people without per-
mission, which poses a threat to the privacy. We strongly
oppose such usage of our technique.

5. Detailed results
Tables 2 and 3 present the per-scene comparison. The re-

sults demonstrate that our proposed approach significantly
outperforms baseline methods.

References
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and

Jack Dongarra. Novel hpc techniques to batch execution of
many variable size blas computations on gpus. In Interna-
tional Conference on Supercomputing, 2017. 1

[2] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf acceleration toolbox. arXiv preprint
arXiv:2210.04847, 2022. 1

[3] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

2



sport1 sport2 sport3 basketball

Metric PSNR↑
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Table 2. Quantitative comparisons on the NHR dataset.
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