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Peng et al.: Convolutional Occupancy Networks. ECCV 2020
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2 Related Work

Learning-based 3D reconstruction methods can be broadly categorized by the
output representation they use.

oxel representations are amongst the earliest representations for
earning-based 3D reconstruction [, . ]. Due to the cubic memory requirements
of voxel-based representations, several works proposed to operate on multiple
scales or use octrees for efficient space partitioning [, ., . . ]. However,

even when using adaptive data structures, voxel-based techniques are still limited
in terms of memory and computation.

IPoint Cloudsl An alternative output representation for 3D reconstruction is

point clouds which have been usedin [, , ', |. However, point cloud-based

representations are typically limited in terms of the number of points they can
handle. Furthermore, they cannot represent topological relations.

A popular alternative is to directly regress the vertices and faces of
a mes ./, ., ., , ] using a neural network. While some of these
works require deforming a template mesh of fixed topology, others result in
non-watertight reconstructions with self-intersecting mesh faces.

IImplicit Representations: IMore recent, implicit occupancy [ , ] and distance
held [, models use a neural network to infer an occupancy probability or
distance value given any 3D point as input. In contrast to the aforementioned
explicit representations which require discretization (e.g., in terms of the number
of voxels, points or vertices), implicit models represent shapes continuously and
naturally handle complicated shape topologies. Implicit models have been adopted
for learning implicit representations from images [, ., ', ], for encoding
texture information_| |, for 4D reconstruction_| | as well as for primitive-based
reconstruction [ . . . ]. Unfortunately, all these methods are limited to
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3.1 Encoder

‘While our method is independent of the input representation, we focus on 3D
inputs to demonstrate the ability of our model in recovering fine details and
scaling to large scenes. More specifically, we assume a noisy sparse point cloud
(e.g., from structure-from-motion or laser scans) or a coarse occupancy grid as
input x.

We first process the input x with a task-specific neural network to obtain a
feature encoding for every point or voxel. We use a one-layer 3D CNN for voxelized
inputs, and a shallow PointNet [ | with local pooling for 3D point clouds. Given
these features, we construct planar and volumetric feature representations in
order to encapsulate local neighborhood information as follows.
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Fig.2: Model Overview. The encoder (left) first converts the 3D input x
(e.g., noisy point clouds or coarse voxel grids) into features using task-specific
neural networks. Next, the features are projected onto one or multiple planes
(Fig. 2a) or into a volume (Fig. 2b) using average pooling. The convolutional
decoder (right) processes the resulting feature planes/volume using 2D/3D
U-Nets to aggregate local and global information. For a query point p € R?, the
point-wise feature vector (x, p) is obtained via bilinear (Fig. 2¢ and Fig. 2d) or
trilinear (Fig. 2¢) interpolation. Given feature vector ¥(x, p) at location p, the
occupancy probability is predicted using a fully-connected network fo(p, ¥(p, x)).

Plane Encoder: As flustrated in Fig. 2a, for each input point, we perform an
> saakiall onto a canonical plane (i.e., a plane aligned with the

axes of the coordinate frame) which we discretize at a resolution of H x W pixel
cells. For voxel inputs, we treat the voxel center as a point and project it to
the plane. We aggregate features projecting onto the same pixel using average
pooling, resulting in planar features with dimensionality H x W x d, where d is
the feature dimension.

hile planar feature representations allow for encoding

Volume Encoder:
ainlosgasnabialaesaludlon (1282 pixels and beyond), they are restricted to two
dimensions. Therefore, we also consider volumetric encodings (see Fig. 2b) which

3.2 Decoder

e endow our model with translation equivariance by processing the feature
planes and the feature volume from the encoder using 2D and 3D convolutional
hourglass (U-Net) networks [, | which are composed of a series of down- and
upsampling convolutions with skip connections to integrate both local and global
information. We choose the depth of the U-Net such that the receptive field
becomes equal to the size of the respective feature plane or volume.

Our single-plane decoder (Fig. 2c) processes the ground plane features with
a 2D U-Net. The multi-plane decoder (Fig. 2d) processes each feature plane
separately using 2D U-Nets with shared weights. Our volume decoder (Fig. 2¢)
uses a 3D U-Net. Since convolution operations are translational equivariant, our
output features are also translation equivariant, enabling structured reasoning,
Moreover, convolutional operations are able to “inpaint” features while preserving
global information, enabling reconstruction from sparse inputs.

3.3 Occupancy Prediction I

iven the aggregated feature maps, our goal is to estimate the occupancy
probability of any point p in 3D space. For the single-plane decoder, we project
each point p orthographically onto the ground plane and query the feature value
through bilinear interpolation (Fig. 2c). For the multi-plane decoder (Fig. 2d),
we aggregate information from the 3 canonical planes by summing the features
of all 3 planes. For the volume decoder, we use trilinear interpolation (Fig. 2e).
Denoting the feature vector for input x at point p as 1(p,x), we predict the
occupancy of p using a small fully-connected occupancy network:

fﬂ(p!w(pax)) - [Us 1] (l)

I3.4 Training and Inference I

At training time, we uniformly sample query points p € R* within the volume of
interest and predict their occupancy values. We apply the binary cross-entropy
loss between the predicted 6p and the true occupancy values op:

£(ép, 0p) = ~[op - 10g(6p) + (1 — 0p) - log(1 — )] (2)



4 Experiments

We conduct three types of experiments to evaluate our method. First, we perform
object-level reconstruction on ShapeNet [ ] chairs, considering noisy point
clouds and low-resolution occupancy grids as inputs. Next, we compare our ap-
proach against several baselines on the task of scene-level reconstruction using
a synthetic indoor dataset of various objects. Finally, we demonstrate synthetic-
galagaigEalization by evaluating our model on real indoor scenes | , .

: We use all 13 classes of the ShapeNet subset, voxelizations,

and tram/va.l/test split from Choy et al. [']. Per-class results can be found in

I4.2 Scene-Level Reconstruction I

To analyze whether our approach can scale to larger scenes, we now reconstruct
3D geometry from point clouds on our synthetic indoor scene dataset. Due to the
increasing complexity of the scene, we uniformly sample 10000 points as input
point cloud and apply Gaussian noise with standard deviation of 0.05. During
training, we sample 2048 query points, similar to object-level reconstruction
For our plane-based methods, we use a resolution to 1282. For our volumetric
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Synthetic Indoor Scene Dataset: We create a synthetic dataset of 5000
scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table).
A scene consists of a ground plane with randomly sampled width-length ratio,
multiple objects with random rotation and scale, and randomly sampled walls.
ScanNet v2 [ ]: This dataset contains 1513 real-world rooms captured with an
RGB-D camera. We sample point clouds from the provided meshes for testing.
Matterport3D [ ]: Matterport3D contains 90 buildings with multiple rooms
on different floors captured using a Matterport Pro Camera. Similar to ScanNet,

e POt clouds for evaluating our model on Matterport3D.

ONet [ ]: Occupancy Networks is a state-of-the-art implicit 3D reconstruction
model. It uses a fully-connected network architecture and a global encoding of
the input. We compare against this method in all of our experiments.
PointConv: We construct another simple baseline by extracting point-wise fea-
tures using PointNet++ [ ], interpolating them using Gaussian kernel regression
and feeding them into the same fully-connected network used in our approach.
While this baseline uses local information, it does not exploit convolutions.
SPSR [ ]: Screened Poisson Surface Reconstruction (SPSR) is a traditional
3D reconstruction technique which operates on oriented point clouds as input.
Note that in contrast to all other methods, SPSR requires additional surface
normals which are often hard to obtain for real-world scenarios.

= we consider Volumetric IoU, Chamfer Distance, Normal Consis-

tcncy for evaluation. We further report F-Score [ | with the default threshold

value of 1% unless otherwise specified. Details can be found in the supplementary.
I 4.1 Object-Level Reconstruction I

Reconstruction from Point Clouds:fTable | and Fig. 3 show quantitative
and qualitative results. Compared to thfl baselines, all variants of our method
achieve equal or better results on all three metrics. As evidenced by the training
progression plot on the right, our method reaches a high validation ToU after only
few iterations. This verifies our hypothesis that leveraging convolutions and local
features benefits 3D reconstruction in terms of both accuracy and efficiency. The
results show that, in comparison to PointConv which directly aggregates features
from point clouds, projecting point-features to planes or volumes followed by
2D/3D CNNs is more effective. In addition, decomposing 3D representations
from volumes into three planes with higher resolution (642 vs. 32%) improves
performance while at the same time requiring less GPU memory. More results

Besides noisy point clouds, we also evaluate on the
" Here, the goal is to recover high-resolution details

approach, we investigate both 32% and 64% resolutions. Hypothesizing that the

4.3 Ablation Study

n this sectlon, we investigate on our synthetic indoor scene dataset different
feature aggregation strategies at similar GPU memory consumption as well as

Performance at Similar GPU Memory: | Table 4a shows a comparison of
ar GPU memory utilization. Our

multi-plane approach slightly outperforms the single plane and the volumetric

approach in this setting. Moreover, the increase in plane resolution for the single

pla.ne variant dOEb not result in a cledr performance boost, demonstrating that
g £ guarantee better performance.

o analyze the effect of the feature interpo-
. wesi:coder of our method, we compare nearest
nelghbor and bllmear mterpolatlon for our multi-plane variant. The results in
Table 4b clearly demonstrate the benefit of bilinear interpolation.

|4.4 Reconstruction from Point Clouds on Real-World Datasets I

Next, we investigate the generalization capabilities of our method. Towards this
goal, we evaluate our models trained on the synthetic indoor scene dataset on the
real world datasets ScanNet v2 [_] and Matterport3D [ ]. Similar to our previous
geise 10000 points sampled from the meshes as input.

ScanNet v2: Pur results in Table 5 show that among all our variants, the

i e models perform best, indicating that the plane-based approaches
are more affected by the domain shift. We find that 3D CNNs are more robust
to noise as they aggregate features from all neighbors which results in smooth
outputs. Moreover, all variants outperform the learning-based baselines by a
significant margin.

The qualitative comparison in Fig. 6 shows that our model is able to smoothly
reconstruct scenes with geometric details at various scales. While Screened
PSR [ | also produces reasonable reconstructions, it tends to close the resulting
meshes and hence requlres a carefully chosen trimming parameter. In contrast,
gadditional hyperparameters.

inally, we investigate the scalability of our method

Matterport3D Dataset:
w Prise multlplc rooms and multiple ﬂoors For thls
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Deep Residual Learning for Image Recognition

Authors
Publication date
Conference

Description

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
2016
Computer Vision and Pattern Recognition (CVPR), 2016

Deeper neural networks are more difficult to train. We present a residual learning
framework to ease the training of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced functions. We provide
comprehensive empirical evidence showing that these residual networks are easier to
optimize, and can gain accuracy from considerably increased depth. On the ImageNet
dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG
nets but still having lower complexity. An ensemble of these residual nets achieves
3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015
classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The
depth of representations is of central importance for many visual recognition tasks.
Solely due to our extremely deep representations, we obtain a 28% relative improvement
on the COCO object detection dataset. Deep residual nets are foundations of our
submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places
on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO
segmentation.

I Total citations

Cited by 246584 I

He et al.: Deep Residual Learning for Image Recognition. CVPR 2016 (Best Paper)
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5.1. Experimental results

Tables 1 and 2 summarize the quantitative results and
Figure 7 shows qualitative comparisons.

Comparison to alternative approaches. In Table 1 we

Does recognizing objects help scene completion? Pre-
vious work has shown scene completion is possible without

Does scene completion help in recognizing objects? To
answer this question, we trained a model with a loss only ac-

Does synthetic data help? To investigate the effect of us-
ing synthetic training data, we compared models trained

I QaA: BRI —LDH

5 4: BiSERIEE/ AR XERstorytelling2BMNA+o#ES. BEFIN

Does a bigger receptive field help? In Table 3, the net-
works labeled [Basic] and [Basic+D] have the same number

Does multi-scale aggregation help? Comparing the net-
work performance with and without the aggregation layer

Do different encodings matter? The last three rows in

Table 3 compare different volumetric encodings: projec-

Is data balancing necessary? To balance the empty and
occupied voxel examples, we proposed to sample the empty

Limitations. Firstly, we do not use any color information,
so objects missing depth such as “windows” are hard to han-

Song et al.: Semantic Scene Completion from a Single Depth Image. CVPR 2017
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