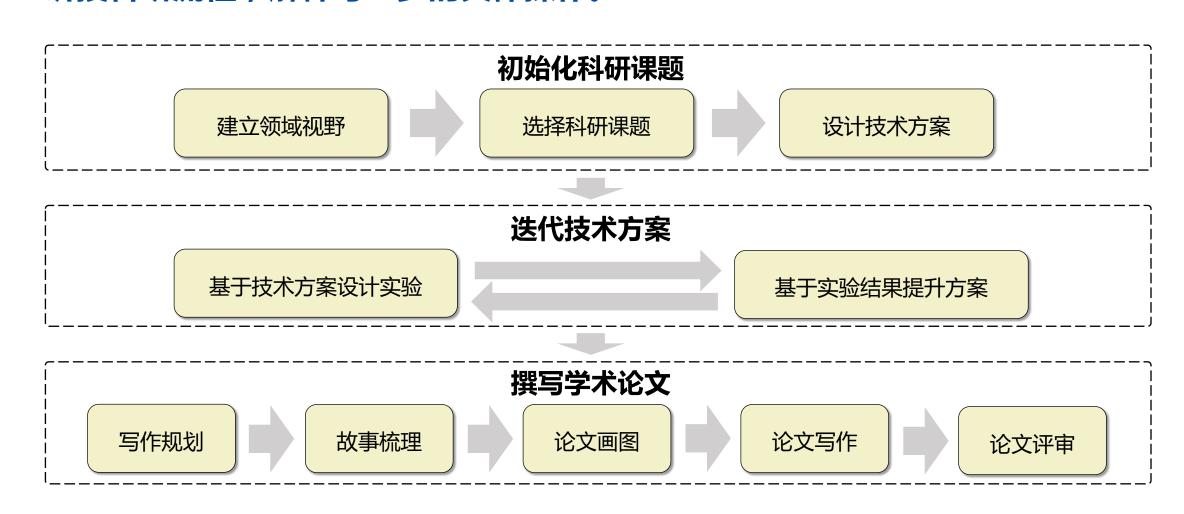
学术论文的科研流程概述

彭思达 浙江大学

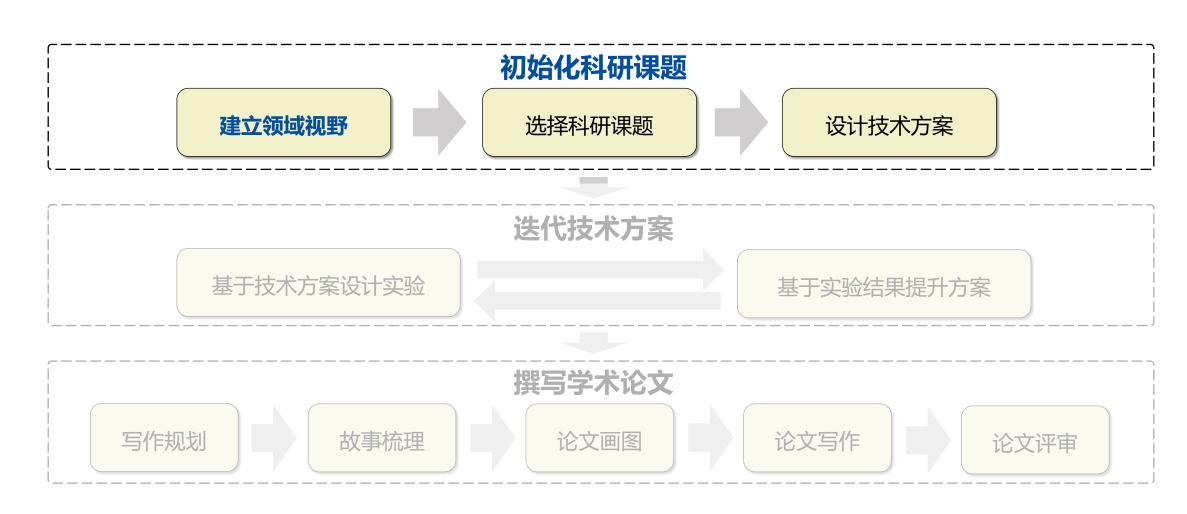
科研经验分享

报告内容

• 讲授科研流程,解释每一步的具体操作。



第一部分:科研课题初始化



什么是领域的视野

"领域"的定义:特定的科研方向,如3D reconstruction、Novel view synthesis。

什么是领域的视野

对"技术演变"的视野

- 有哪些milestone papers?
- 领域技术如何随着时间的推移而演变?

对"重要问题"的视野

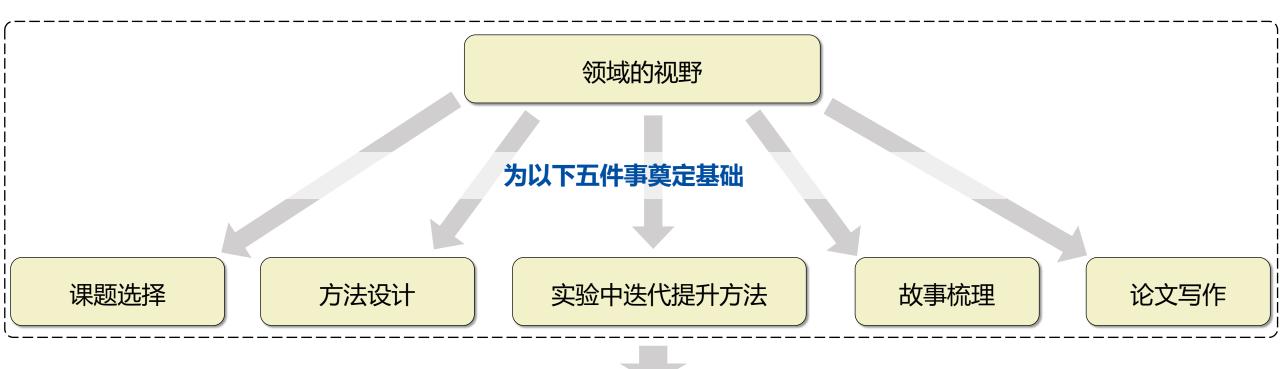
- 这个领域的终极目标是什么?
- 该领域已经达到了什么水平?
- 还有哪些重要的问题仍未被解决?
- 现阶段的热点话题是什么?

案例学习:多视角重建

• 多视角重建的技术如何随着时间的推移而演变?

• 该方向还存在哪些重要的问题?

为什么我们需要建立视野



成为该领域的专家

案例学习:多视角重建

- 多视角重建的技术如何随着时间的推移而演变?
 - 2025年: VGGT、Video diffusion model
- 该方向还存在哪些重要的问题?
 - 2025年:稀疏视角重建

领域的视野

为以下五件事奠定基础

课题选择

方法设计

实验中迭代提升方法

故事梳理

论文写作

如何建立领域的视野

确定该领域的milestone papers

查找之前和之后的论文

阅读论文以了解这些论文解决的问题和pipeline,以及他们的技术见解

整理技术的演变轨迹

整理领域热点问题的演变

跟踪和预测新技术

跟踪和预测新问题

案

案例学习:多视角重建

- 200?—2016 , Colmap : Multi-view stereo
- 2018—2020, MVSNet:使用3D CNN在cost volume融合
- 2020—2023, NeRF: 定义global representation, 使用differentiable rendering融合
- 2023—2024, DUSt3R: 将图像tokenlize后, 使用vit融合
- 2023—2025, CAT3D: 使用Multi-view Diffusion Model融合

如何识别Milestone papers

两个技巧

- 查找该领域被引用次数最多的论文并按日期对它们进行排序。
- 寻求经验丰富的研究人员的建议。

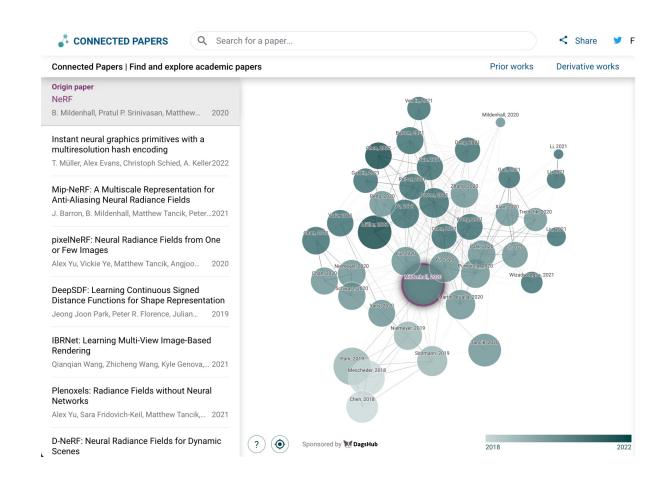
如何查找两个技术里程碑之间的论文

向前追溯

- 里程碑论文引用的论文
- 基础工作

向后追踪

- 引用里程碑论文的论文
- 衍生工作



一个好用的工具: Connected Papers

怎么梳理技术发展脉络:时间轴思维导图

Milestone paper: 2016.10, COLMAP: Pixelwise View Selection for Unstructured Multi-View Stereo

突破性贡献:传统multi-view stereo集大成者,把大部分情况的相机pose问题,以及特别稠密观测下的depth estimation问题基本解决。

2018 2020 Milestone paper: 2018.04, MVSNet: Depth Inference for Milestone paper: 2020.03, NeRF: Representing Scenes as Unstructured Multi-view Stereo Neural Radiance Fields for View Synthesis 突破性贡献: 提出新的3D representation, 基于probability 突破性贡献: 提出新的3D representation, NeRF。基于 volume的depth。引入CNN根据cost volume预测probability differentiable rendering融合多视角信息。 volume. Patchmatchnet: Learned multi-view patchmatch stereo SimpleRecon: 3D Reconstruction Without 3D Convolutions Stereo Magnification: Learning View Synthesis using Multiplane Images MVSNet的follow up Atlas: End-to-End 3D Scene Reconstruction from Posed Images 突破性贡献——引入CNN预测3D grid-based TSDF。 Neuralrecon: Real-time coherent 3d reconstruction from monocular video

NeuS: 突破性贡献——提出新的3D representation, NeuS。

Instant NGP: 突破性贡献——feature grid based representation

3DGS: 突破性贡献——提出新的3D representation, 3DGS。

Reconstruction

用ViT从tokens里预测depth。

Milestone paper: 2021.12, Input-Level Inductive Biases for 3D

突破性贡献: 第一个将multi-view images当作一组tokens, 尝试

2021

IBRNet

MVSplat

NeRF的follow up

MVSNeRF

怎么梳理技术发展脉络

首先,初始化一个时间轴,将论文列到时间轴、并阅读每篇论文

• 了解它解决的问题、pipeline和技术见解。

然后,确认哪些论文是milestone paper、哪些论文是follow-up

• 根据论文方法的创新性判断。

最后,总结这些论文

- Milestone paper的技术范式
- Follow-up papers作出的改进

怎么梳理技术发展脉络:时间轴思维导图

Milestone paper: 2016.10, COLMAP: Pixelwise View Selection for Unstructured Multi-View Stereo

突破性贡献:传统multi-view stereo集大成者,把大部分情况的相机pose问题,以及特别稠密观测下的depth estimation问题基本解决。

2018 2020 Milestone paper: 2018.04, MVSNet: Depth Inference for Milestone paper: 2020.03, NeRF: Representing Scenes as Unstructured Multi-view Stereo Neural Radiance Fields for View Synthesis 突破性贡献: 提出新的3D representation, 基于probability 突破性贡献: 提出新的3D representation, NeRF。基于 volume的depth。引入CNN根据cost volume预测probability differentiable rendering融合多视角信息。 volume. Patchmatchnet: Learned multi-view patchmatch stereo SimpleRecon: 3D Reconstruction Without 3D Convolutions Stereo Magnification: Learning View Synthesis using Multiplane Images MVSNet的follow up Atlas: End-to-End 3D Scene Reconstruction from Posed Images 突破性贡献——引入CNN预测3D grid-based TSDF。 Neuralrecon: Real-time coherent 3d reconstruction from monocular video

NeuS: 突破性贡献——提出新的3D representation, NeuS。

Instant NGP: 突破性贡献——feature grid based representation

3DGS: 突破性贡献——提出新的3D representation, 3DGS。

Reconstruction

用ViT从tokens里预测depth。

Milestone paper: 2021.12, Input-Level Inductive Biases for 3D

突破性贡献: 第一个将multi-view images当作一组tokens, 尝试

2021

IBRNet

MVSplat

NeRF的follow up

MVSNeRF

怎么梳理大家所关心问题的发展脉络

记录领域每年在解决的问题

• 根据构建的思维导图,看看每年的热点问题是什么。

总结该领域的发展

- 这个领域的终极目标是什么?
- 该领域已经达到了什么水平?
- 还有哪些重要的问题仍未被解决?
- 现阶段的热点话题是什么?

要建立多大的视野?

匹配个人能力

初学者往往只需建立较为视野narrow的视野

当一个人越来越强,看的论文越来越多,视野也越来越大

建立视野的额外方式

观看知名研究人员的演讲

- Noah Snavely (Planet-scale visual understanding https://www.youtube.com/watch?v=UHkCa9-Z1Ps)
- 3DGV https://3dgv.github.io/
- UW CS Colloquia https://www.youtube.com/@uwcse/playlists

和他人交流

• 实验室伙伴、Senior advisors和知名研究人员

第一部分:科研课题初始化

我们需要做什么

确定Project setting (输入和输出)

确定想解决的技术问题

- Project setting代表了特定的研究方向
- 技术问题代表了该研究方向上面临的问题

为什么科研选题很重要

选题决定了两方面

论文的Novelty

论文的价值

选题为什么决定了论文的Novelty

• 不同问题的创新空间区别很大

- 四种情况
 - 1. 第一种情况,同样输入输出的任务,已经有了不错的解决方案,只是有些地方做得还不够好。
 - 2. 第二种情况,输入或输出有所变化的任务,已经有了不错的解决方案。或者在多个完全不同 data domain、技术问题内核相同的任务中,都有了不错的类似解决方案。
 - 3. 第三种情况,只有少数一两个完全不同data domain、技术问题内核相同的任务,有不错的解决方案。
 - 4. 第四种情况,在各个不同领域的任务中,虽然有类似的技术问题,但都没有较好的解决方案。

举例

1. 第一种情况,同样输入输出的任务,已经有了不错的解决方案,只是有些地方做得还不够好。

如何煮熟猪肉

2. 第二种情况,输入或输出有所变化的任务,已经有了不错的解决方案。或者在多个完全不同data domain、技术问题内核相同的任务中,都有了不错的类似解决方案。

如何煮熟某种肉

3. 第三种情况,只有少数一两个完全不同data domain、技术问题内核相同的任务,有不错的解决方案。

如何煮熟并且不煮老某种肉

4. 第四种情况,在各个不同领域的任务中,虽然有类似的技术问题,但都没有较好的解决方案。 如何**快速地煮熟并且不煮老**某种肉

选题为什么决定了论文的价值

• 以下为个人想法,非普适观念。

论文的价值取决于两个部分

选择特定研究方向上业界所需要的问题, 直接影响了实用价值 技术创新

选择没有良好答案的问题, 直接驱动了技术创新

实用价值上的举例

- 两篇论文分别解决了以下两个问题, 你更感兴趣看哪篇:
 - 如何解决可控核聚变
 - 如何在一个门上装两个门把手

两个关键问题

有哪些课题

课题的重要程度排序

怎么知道有哪些课题

- 论文积累方面:尝试整理某一个科研方向的论文。
- 实验实践方面:坚持在某一个方向,通过一个个科研工作不断积累对这个方向的认知,这样每一篇工作都是在之前的基础上,能越做越轻松。

如何整理某一个科研方向的论文

确定该科研方向的milestone papers

查找之前和之后的论文

阅读论文以了解这些论文解决的问题和pipeline,以及他们的技术见解

整理技术的演变轨迹

整理领域热点问题的演变

跟踪和预测新技术

跟踪和预测新问题

怎么知道有哪些课题

- 回答以下问题:
 - 这个领域的终极目标是什么?
 - 该领域已经达到了什么水平?
 - 还有哪些重要的问题仍未被解决?
 - 现阶段的热点话题是什么?

怎么知道有哪些课题

- 论文积累方面: 尝试整理某一个科研方向的论文。
- 实验实践方面:坚持在某一个方向,通过一个个科研工作**不断积累对这个方向的 认知**,这样每一篇工作都是在之前的基础上,能越做越轻松。

举例

- 我们在动态场景重建上的积累:
 - Neural Body (CVPR 2021)
 - -> MLP Maps (CVPR 2023)
 - -> 4K4D (CVPR 2024)
 - -> LongVolCap (SIGAsia 2024)
 - -> FreeTimeGS (CVPR 2025)

怎么知道课题的重要程度排序

重要程度由两方面决定

课题影响范围

常和各个方向的人聊, 了解什么问题被各个方向都需要 课题迫切需求程度

常和业界的人聊, 了解公司迫切需要什么

选题常见的陷阱

• 1. 倾向于去做有明显答案的课题。

通常的结果:

能顺利地完成这个科研项目,写出一篇manuscript进行投稿。

运气好的话,中稿,收获一篇阅读量几乎为0的论文。

运气不好的话,这篇manuscript将被多次拒稿,第一作者将遭受心理上的拷打。

选题常见的陷阱

2. 知道有哪些课题,但忘记课题的重要程度排序,想到能做的课题就立马动手做。可能的结果:不小心选到不重要的课题,或者有答案的课题,进入第1个陷阱。

9. 确实选择了对最终目标很重要的问题,但不是今年应该解决的问题,因为技术 就绪度还不够,或者个人能力有限。

例子: 最终目标是做出很好吃的牛排, 因此想用分子料理技术制作真空低温慢煮牛排, 但目前连做饭都不会。

科研选题流程

寻找好课题的四个步骤

建立领域的视野

- 整理milestone papers/技术范式。
- 了解它们是如何随着时间演变的。

列出领域内的课题

- 终极目标是什么?
- 已经达到了什么水平?
- 还有哪些重要的问题 仍未被解决?

判断哪些课题是好课题

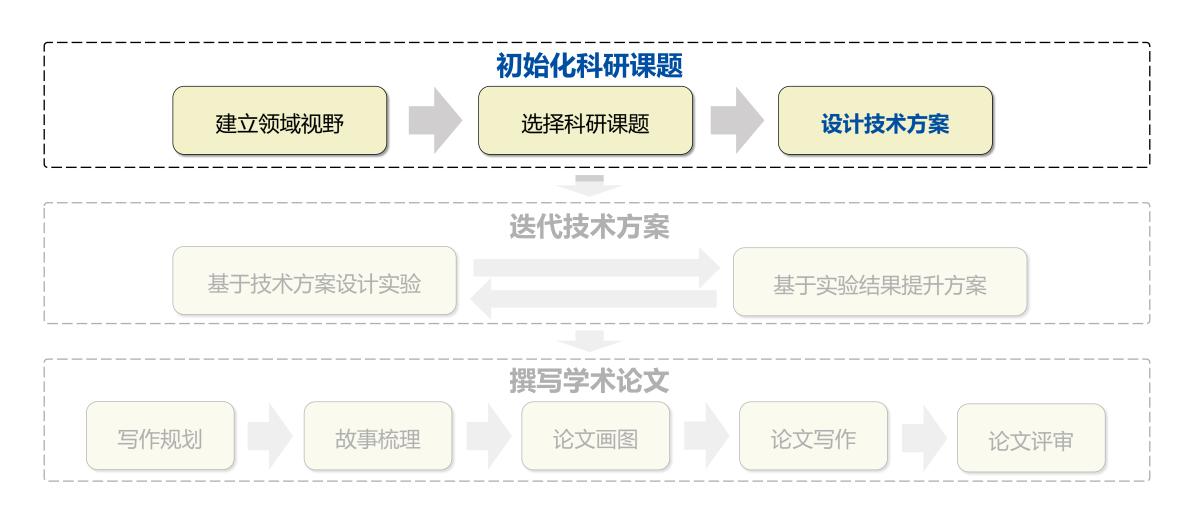
- 对问题进行重要程度排序。
- · 考虑任务的难度与个人能力 相匹配。

在选题上Aim High

选择个人能力范围内最重要的科研课题。

Aim high: 选择个人能力范围内最重要的科研课题。

第一部分:科研课题初始化



方法设计

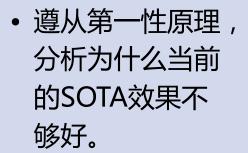
什么是方法设计

• 在选定课题后,我们需要设计一种新颖的pipeline来达到SOTA performance。

为什么要有方法设计的系统性思路

- 一个清楚的方法设计思路能更有效地解决问题并达到SOTA。
- 让我们提出的方法更有动机,同时使得论文的故事更吸引人。
- 该系统性思路可以有效提升我们的技术insights。
- 保证了方法的技术创新性,以免审稿人说它没有novelty。

分析原因



设计方法

• 根据分析的原因 , 设计一种能达到 SOTA的方法。

判断合理性

• 判断提出的技术 方法是否合理

改进方法

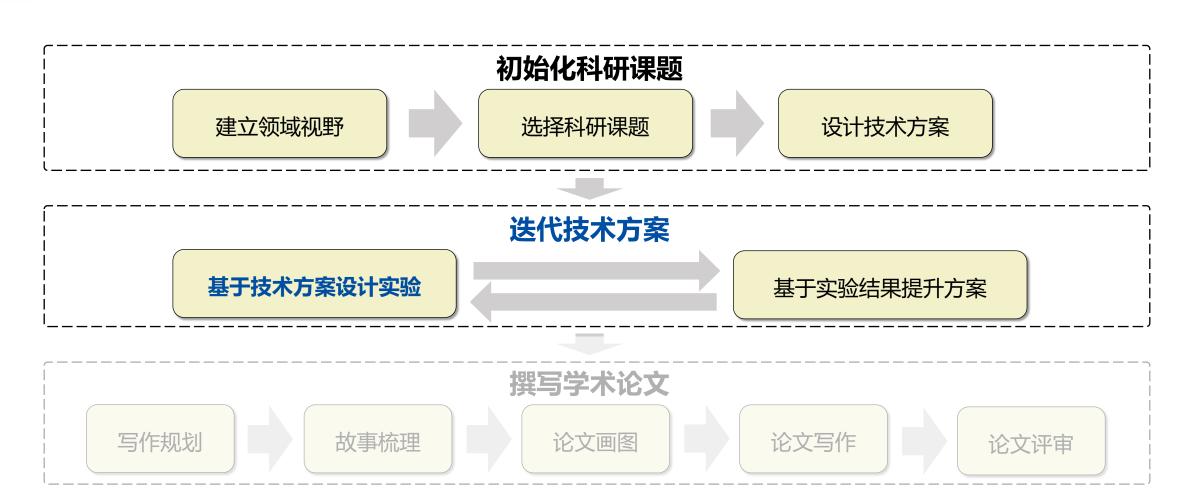
通过读论文、讨 论和做实验改进 技术方法

如何设计方法

三个要点

- 针对技术原因,在本质上解决目标问题 -> 保证了方法的有效性。
- 在Pipeline层面设计解法,而不是小修小补。
- 如果设计方法的过程中,发现已有方法或者简单的方法拼接(A+B)其实已经能很好地解决目标问题,那么建议果断换一个课题。

第二部分:实验中迭代提升方法



实验设计

实验设计是什么

• 规划要做哪些实验,实现并提升Technical idea,达到SOTA指标。

实验设计的两个好处

- 让研究变得更简单:想清楚实验的目的,明确科学研究的方法。
- 让实验更简单:降低实验难度,提高实验效率。

如何设计实验

• 核心原则:减少实验中包含的探索点的数量。

如何减少exploration points的数量

分解pipeline

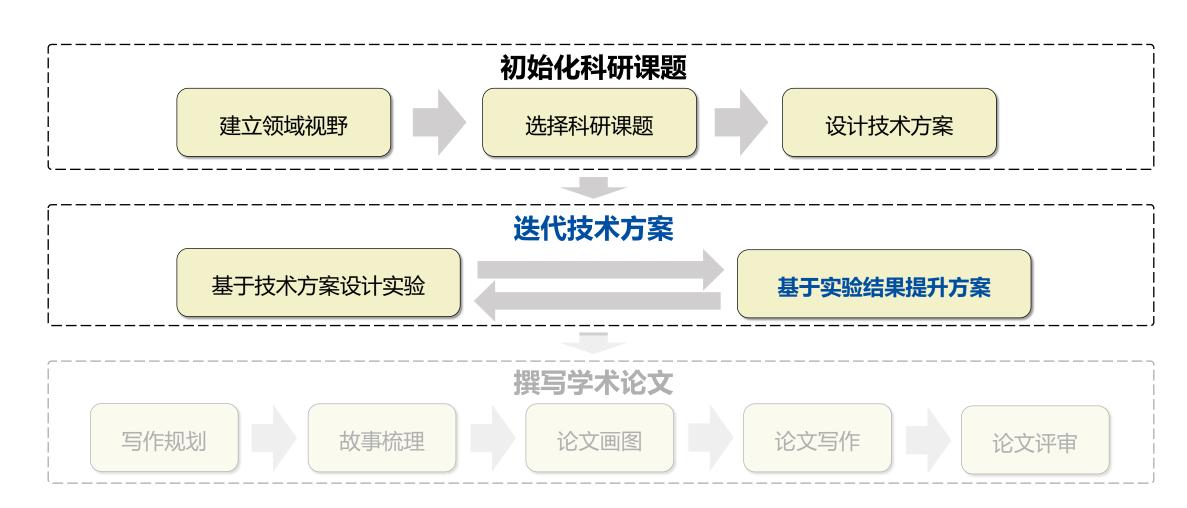
将idea分解为不同的组件,从可控的idea开始,不断添加探索性和创新性的框架/模块。

分解实验设置

从一个简单的setting开始探索,然后逐渐增加难度,之后进入到真正的setting。

我们还应该考虑exploration points的重要性,进行实验优先级排序

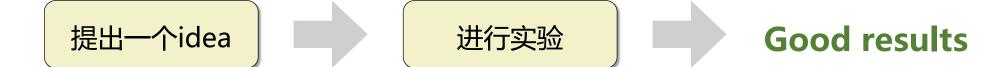
第二部分:实验中迭代提升方法



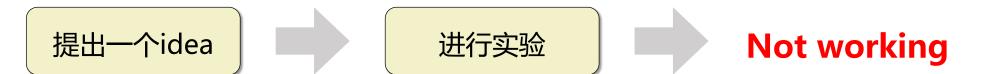
为什么需要改进方法

• 因为初始提出的方法通常会不work。

理想情况:

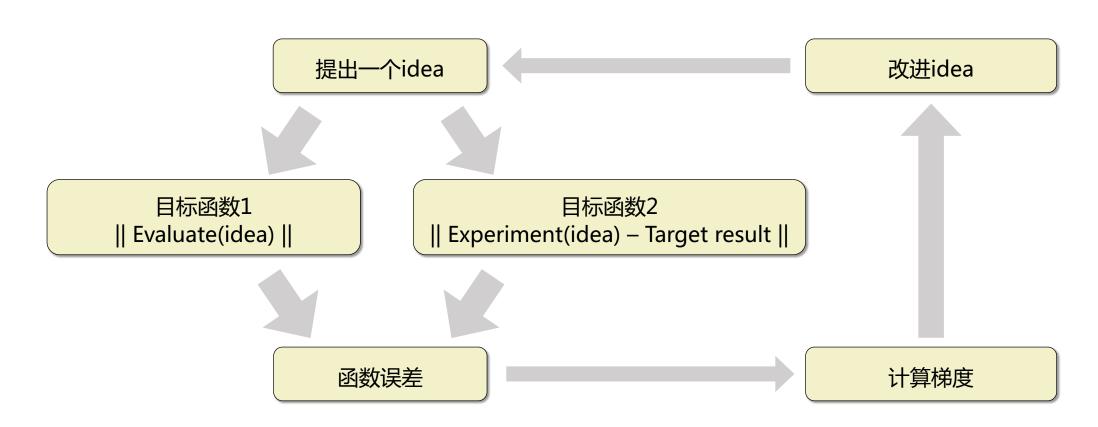


实际情况:

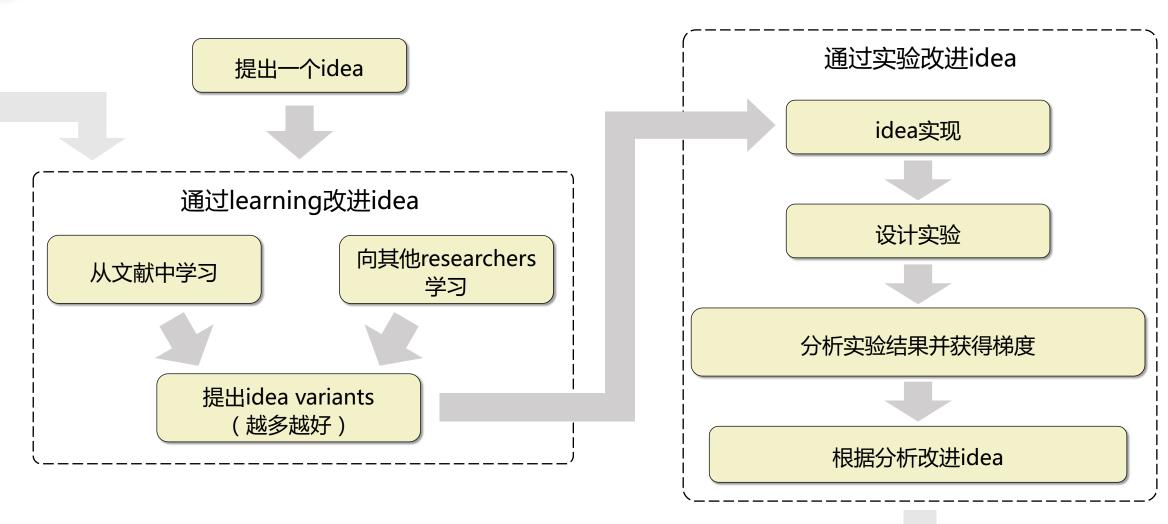


如何改进方法

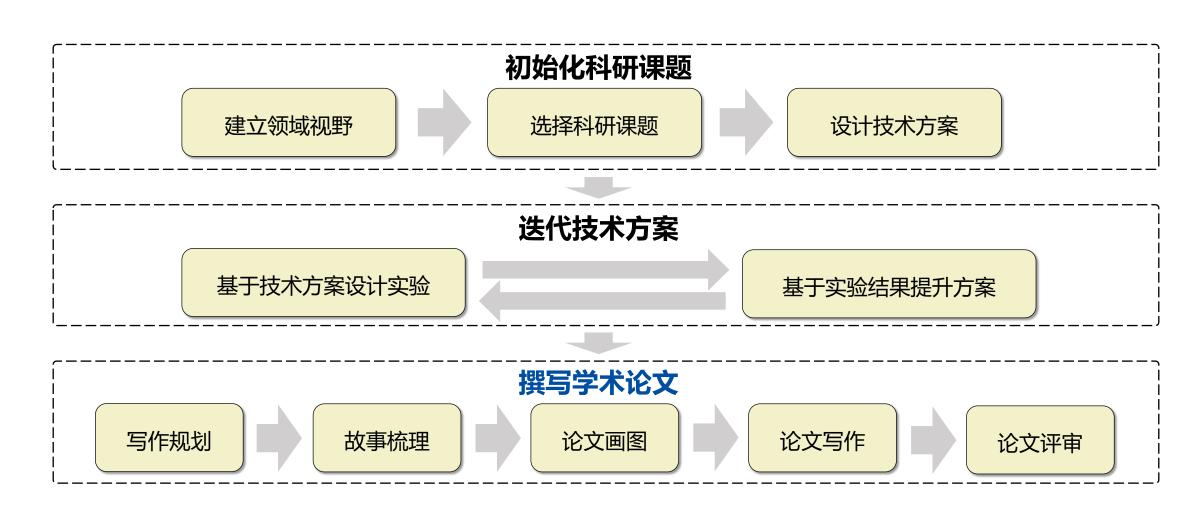
• 可以把改进方法的过程当作SGD优化过程。



如何改进方法



第三部分:论文写作



写作规划

- Step 1 画一个清楚的pipeline figure的草图(理清楚方法的流程步骤),梳理论文story,写一版introduction的初稿。 Step 2 列出要做的comparison experiments和ablation studies , 并开始做起来。 写method,同时做实验。 Step 3 Step 4 改introduction和method,同时做实验。 Step 5 实验做差不多以后,写experiment。 Step 6 写related work。 Step 7 Review论文。改论文的introduction、method和experiment。 Step 8 写abstract, 取论文名字。
 - Step 9 反复review论文,改论文。

为什么我们需要写作规划

为什么规划很重要

- 让自己做论文更轻松,避免最后几天熬夜。
- 大幅提高论文的完整程度。

怎么梳理论文的故事

首先,整理论文方法流程

给论文画一个pipeline figure的草图,帮助自己直观地看清论文方法:

- 按照 "输入→模块1→中间输出1→模块2→……→模块N→输出"的风格,用文字描述pipeline。(我们需要清楚地描述pipeline)。
- 选择流程图的布局并绘制简单的流程图。

案例学习: 4K4D

- 用文字描述pipeline
 - 输入: 点云序列
 - 模块1: 4D feature grid
 - 中间输出1: 每个点的feature
 - 模块2: 几何网络、外观网络
 - 中间输出2: 每个点的density、color
 - 模块3: 点云渲染器
 - 输出: 图片

案例学习: 4K4D

• 选择流程图的布局并绘制简单的流程图

模块2: 中间输出2: 输入: 模块1: 中间输出1: 模块3: 输出: 几何网络 Density 点云序列 4D feature grid 渲染器 图片 Point feature 外观网络 Color

怎么梳理论文的故事

第二、按序回答以下问题

- 1. 我们的pipeline有哪些贡献(提出新任务、确定新的技术挑战、提出新的技术贡献)?
- 2. 我们的贡献有哪些好处?它们解决了哪些技术挑战?
- 3. 我们的论文带来了哪些新的insights?
- 4. 我们如何通过介绍以往的方法引入我们关注的技术挑战和新的insights ?

第三, 概述论文故事

- 1. 介绍论文的任务。
- 2. 通过讨论以前的方法来引入我们解决的技术挑战。
- 3. 为了应对这一技术挑战, 我们提出 xx 贡献。
- 4. 我们的贡献有哪些技术优势,有哪些新的insights?

论文自我评审

评审论文时我们要做什么

• 确定审稿人可能指出的潜在问题。

为什么要自我评审

• 让论文的实验、结论更加solid。

如何自我评审论文:A checklist

1. 技术贡献是否足够	1.1 想解决的failure cases很常见
	1.2 提出的技术已经被well-explored了,该技术带来的performance improvement是可预见的/well-known的
2. 论文写作是否清楚	2.1 论文Introduction是否清楚描述论文贡献
	2.2 论文pipeline figure是否清楚描述pipeline与技术贡献
	2.3 缺少技术细节,不可复现
	2.4 每个方法模块是否都写了motivation
3. 实验效果是否足够好	3.1 是否比之前方法好很多
	3.2 实验效果是否让人impressive
4. 实验测试是否充分	4.1 缺少ablation studies
	4.2 缺少重要的baselines、缺少重要的evaluation metric
	4.3 数据太简单,无法证明方法是否真的work
5. 方法设计是否合理	5.1 实验的setting不实际
	5.2 方法存在技术缺陷,看起来不合理
	5.3 方法模块的鲁棒性:是否需要在每个场景上调超参
	5.4 新的方法设计在带来benefit的同时,引入了更强的limitation,导致新方法的收益为负

Thank you!

彭思达 浙江大学

科研经验分享

https://github.com/pengsida/learning_research